
. Introduction

For Fiori and SAPUI5 development there is a lot of infrastructure available to support single developers who are creating and

maintaining SAPUI5 or Fiori projects. SAP Web IDE provides a rich tool set to support single developers or small teams; for example,

wizards that generate a skeleton, and the metadata files that are required for new projects. The larger the team is, however, the

more urgent is the need for an automated CI process based on a central build that includes automated testing and code quality

checks.

The runtime used in this chapter's scenario is an ABAP front-end server. ABAP systems are usually part of large landscapes, in which

change processes are managed by life-cycle management tools using ABAP transport requests. The most common ABAP system

setup is a staging landscape that consists of a development system, an acceptance testing system and a productive system. The

systems are linked to each other in this order by transport relationships. Usually, direct modification of objects in the productive

system is not permitted. Instead, changes must be applied to the development system under governance of a transport request. The

changes make their way to the productive system only through the transport request.

The CI process can coexist with the ABAP life-cycle management process in the following way: the CI process ensures the quality of

the code that is implemented outside the ABAP system. It converts the sources into the correct format (mainly minification and

preload generation), runs automated tests and code checks, and finally produces an artifact that is ready to be uploaded to the

ABAP development system. From this point, ABAP life-cycle management takes control and governs the delivery process, which

usually includes transporting the changes into the test system, and later into the productive system. From the perspective of

software delivery to production, ABAP life-cycle management is the leading process; the CI process supports development, and is a

preparation step for providing the objects being uploaded into the ABAP development system.

Hence, the delivery process infrastructure for SAPUI5 or Fiori objects consists of two distinct parts:

A. The CI process outside the ABAP system: processes single code changes, verifies and tests them automatically, minifies them,

produces a preload file, and provides a zip file containing the application. A CI server (Jenkins in our example) is used for this.

B. ABAP life cycle management: controls the transport of the changes from the development to the test system (where acceptance

testing can be done), and finally from the test system to the productive system.

The upload into the ABAP development system seems to stand between these two parts. But since it is not part of the artifact

creation in the CI build and requires the existence or automated creation of a transport request in the system, it more logically

belongs to ABAP life-cycle management. Nevertheless, the upload can be triggered automatically immediately after the CI build.

Alternatively, a manually triggered upload is possible.

Figure 1: The high-level process flow

A. Overview: the CI Process

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/principles.png

1. Developers use SAP Web IDE to work on a SAPUI5 or Fiori project. For immediate testing, they run the application directly

from SAP Web IDE on SAP Cloud Platform.

2. In SAP Web IDE, the developer creates a commit and pushes it for review to the Gerrit instance.

3. The voter build starts and executes static code checks and automated tests.

4. The change is reviewed by another person. Provided the assessment of the change was positive and the voter build

successful, the change is merged into the master branch.

5. The CI build starts. It executes the following steps:

o Static code checks for JavaScript.

o Automated tests.

o Minification: the load on the network can be reduced by removing all comments and white spaces from the JavaScript

sources.

o Preload generation: when a SAPUI5 or Fiori application is called from the browser, a lot of resources are usually

downloaded, causing a high number of requests from the browser to the server. This can significantly be improved by

merging all JavaScript files into one single file.

o Packaging the application into a zip file.

Note: If you are using GitHub instead of Gerrit, you can use pull requests to pre-validate and prepare changes. You need to install

build hooks that trigger CI-like builds on the underlying feature branches. For information about implementing this method,

see Generic Project with CI using Cloud Services.

https://www.sap.com/developer/tutorials/ci-best-practices-generic-cloud.html

The task runner tool used is Grunt, which is a common open source tool for processing JavaScript applications. The Grunt ecosystem

offers many open source plugins that perform tasks such as minification or static code analysis. The preload generation is performed

by a plugin that is published by the SAP OpenUI5 project.

What we describe here is intended to be used only as an example. You can use a different infrastructure than described here, for

example, an SCM tool or CI server other than Git or Jenkins. Also, you can use a build processor other than Grunt; for example, Gulp.

Grunt home

Gulp home

B. Overview: the Delivery Process Using ABAP Life-Cycle Management

The extent to which automation is applied, with respect to the import of the SAPUI5 or Fiori application into the ABAP development

system, depends on local requirements. We describe two alternative approaches: The first one fully automates the transport request

creation, the application upload, and the release of the transport request; the second one assumes that the transport request is

created and released manually - only the application upload using the given transport request is automatically triggered by a

successful CI build. The solution that fits your enterprise most efficiently may strike a different balance between manual and

automatic processes; you may even decide that the upload to the ABAP system remains a strictly manual step.

• Triggered immediately after a successful CI build for one change, the build scheduler automatically creates a new, individual

transport request in the ABAP development system, uploads the application to the ABAP system and releases the transport

request. The person who is responsible for transports imports the transport requests to the ABAP test system. Figure 2 shows

the process flow. The advantage of this approach is complete automation, a disadvantage may be the loss of control in

creating of transport requests.

http://gruntjs.com/
http://gulpjs.com/

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-1c.png

Figure 2: Process for Fiori development with automatic transport request creation

• The responsible person, for example the quality manager, manually creates the transport request to which imported SAPUI5

or Fiori objects are assigned. All application versions that are uploaded to the system are attached to this open transport

request. On a defined schedule - for example once a day - the SAPUI5 or Fiori application is transported into the test system

for acceptance testing. The responsible person then releases the transport request and imports it into the test system. For

subsequent CI builds, he or she must create a new transport request and provide the new transport request number to the CI

process such that newly changed objects are assigned to the latter instead. To avoid a gap in time during which no open

transport request exists, the creation of the new transport request must happen before the old one is closed. Figure 3 shows

the process. The advantage is the controlled creation of transport requests by a responsible person; however, it may be a

disadvantage that this activity requires manual steps.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-1a.png

Figure 3: Process for Fiori development with manual transport request creation

Figure 4 summarizes the infrastructure that is required to run the process.

Figure 4: Landscape for Fiori on ABAP front-end server

The scenario described here builds on the chapters that describe how to set up an example infrastructure using Git/Gerrit as SCM

and Jenkins as CI task engine. For details, see the corresponding chapters that are linked from our navigator page. However, you

may decide to use another SCM system or CI task engine.

https://www.sap.com/developer/tutorials/ci-best-practices-intro.html
https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-1b.png

2. Prerequisites

• An account on SAP Cloud Platform.

• SAP Cloud Connector as reverse proxy to pass requests from SAP Web IDE to your corporate Git installation.

SAP Cloud Platform Documentation

SAP Cloud Platform Cockpit

Connecting to your Corporate Git System

3. Creating Sources for a New Project

The standard method for creating a new SAPUI5 or Fiori project is to use the wizard in SAP Web IDE to choose from the available

templates and to create a skeleton in your workspace. The example here also mentions the wizard that creates one of the sample

Fiori applications for the sake of having something more concrete than a simple Hello-World example.

You can either use SAP Web IDE on SAP Cloud Platform, or alternatively, you can use SAP Web IDE Personal Edition, which offers the

same features but runs on your local machine.

SAP Web IDE

SAP Web IDE Personal Edition

Procedure

1. In Gerrit, create a project with a master branch as described in Generic Project.

2. If you are using SAP Web IDE on SAP Cloud Platform, follow the instructions here:

https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/a8d6db47b1714a8d87f043a3546962c9.html
https://account.hana.ondemand.com/
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/Cloud/en-US/b8427ec16ae64347b97d2d46fb28f7cd.html
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/0221845d73ad403ab2852142f3179177.html
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/5b8bca3147ee4dfd99be8aaf6bd4f421.html
https://www.sap.com/developer/tutorials/ci-best-practices-generic.html

Opening SAP Web IDE

If you are working with SAP Web IDE Personal Edition, install it and start it as described here:

SAP Web IDE Personal Edition

In either case, we assume that you are now logged in to SAP Web IDE.

3. In SAP Web IDE, go to Tools > Preferences > Git settings. Enter your Git user name and email address, and save your

settings.

4. Select the workspace folder, then select one of the following options:

o If you are creating a new Fiori project, select New > Project from Template.

o If you are running through a demo, select New > Project from Sample Application.

In both cases, the next steps are identical.

https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/51321a804b1a4935b0ab7255447f5f84.html
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/5b8bca3147ee4dfd99be8aaf6bd4f421.html

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-2.png

5. Mark the new project and select Git > Initialize Local Repository.

6. Mark the new project again and select Git > Set Remote. Enter the following data:

o Name: origin

o URL: <The HTTPS-based URL of the Gerrit project that you just have created>

o Select Add configuration for Gerrit.

o Press OK.

7. On the right sidebar of SAP Web IDE, open the Git pane. Scroll down, mark Amend Changes and press Commit. This step

injects a change ID into the already existing initial commit, which is required to be able to be pushed to Gerrit for review.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/git-set-remote.png

8. On the right sidebar of SAP Web IDE, open the Git pane. Mark Stage All and enter a commit description. Press Commit.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/git-amend-first-commit.png

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-git-commit.png

9. In the Git pane, select Pull to merge the version graphs of the local Git repository in SAP Web IDE and the remote repository.

You may check it in the Git history pane.

10. To propagate your changes from SAP Web IDE to Gerrit, return to the Git pane, and select Push > origin/master.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-6.png

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-git-push.png

11. Open the Gerrit front end. You see your pushed changes (the Initial commit, the merge commit and the last commit

containing all project files) offered for review in Gerrit.

12. Review the changes in Gerrit and submit them such that they are merged to the master branch.

4. Installing Node.js Jenkins Slave Machine

Grunt requires Node.js and the included package manager npm.

Procedure

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/fiori-gerrit-initial-commits.png

1. Install Node.js on the Jenkins slave machine.

Node.js Home Page

Node.js Downloads

You can install the tar.gz package on Linux in any directory. We recommend that you define a common installation directory

on all your Jenkins slave machines.

2. Open the Jenkins front end, and go to Manage Jenkins > Manage Plugins > Available. Select Node.js Plugin and start the

installation.

Although the primary feature offered by this plugin (using JavaScript directly in job implementations) is not used in our

example, it does handle multiple Node.js versions in parallel, allowing you to choose the appropriate one at the job level.

3. In the Jenkins front end, go to Manage Jenkins > Configure System. Scroll down to the Node.js section and select Node.js

installations. Enter the path to the Node.js binaries and an appropriate name for this installation. The name is referred to by

build job definitions.

5. Creating the Grunt Build File

The Grunt build is controlled by a Gruntfile.js file. This file controls the task flow for processing sources and uses Grunt plugins,

which are expected to be present during the Grunt run. Use the npm package manager to install the plugins needed for Grunt. A file

named package.json contains all dependencies to plugins, by way of package name and version, which are needed for the Grunt

build.

This scenario has been tested with the Grunt plugin versions that are described in the code listing for package.json in the appendix.

Procedure

https://nodejs.org/en/
https://nodejs.org/en/download/

1. Open your project in SAP Web IDE.

2. Select your project folder, choose New > File and enter package.json as name.

3. Copy the content of package.json from the appendix and paste it into the new file.

4. Adapt the package.json file to your context by entering the following values:

o Name of the package

o Package version

o Description

5. Select your project folder, choose New > File and enter Gruntfile.js as its name.

6. Copy the content of Gruntfile.js from the appendix and paste it into the new file.

7. In the Git pane, stage the two new files, enter a commit description and select Commit and Push.

6. Working on a Local Machine

You may clone the Git repository to your local machine either using SAP Web IDE Personal Edition or using the Git command line.

This makes sense when you want to test changes on the Gruntfile.js locally before pushing them to the central Git repository and

having to deal with build errors on the CI server. You need Node.js and Grunt installed on your machine.

Procedure

1. Clone the Git repository to your machine (with SAP Web IDE Personal Edition or Git command line).

2. Open a shell and enter the project directory.

3. Execute the following commands on the shell:

4. npm install
5. grunt

The npm install command installs all needed Node.js modules into the project folder. To avoid versioning them with Git, add

a line containing node_modules* into the .gitignore file.

6. Do some example changes, rerun the Grunt build and finally create a Git commit and push it to Gerrit.

7. Creating the CI Build

We create the job for the CI build on the current master snapshot, which is triggered on each change. The configuration and

credentials used in this section are based on the examples in Build Scheduler.

Procedure

1. Open Jenkins, select New Item to create a new job for the CI build and enter an appropriate item name; the example

uses CI_nw.epm.refapps.ext.shop_master. Select Freestyle Project and press OK.

2. In the job configuration, enter the following values:

Field Value

Restrict where this project can be run
builds

Source Code Management Git

https://www.sap.com/developer/tutorials/ci-best-practices-build.html

Field Value

Repository URL <URL of the Git repository>

Credentials jenkins

Branches to build master

Build Triggers

Poll SCM checked

Schedule
<Enter a pull frequency. For immediate results, two minutes is an
appropriate value.>

Build Environment

Delete workspace before build starts checked

Inject password to build as environment

variables
checked

Global passwords checked

Mask password parameters checked

Provide Node & npm bin/folder to PATH checked

Installation <The node installation name as defined above>

3. In the Build section, select Add build step > Execute shell. In the Command field, enter the following code:

4. npm install

5. node_modules/grunt-cli/bin/grunt --no-color default createZip

The build logic happens here: first, the npm call installs all the needed Grunt plugins. Next, Grunt is called, and executes the

tasks defined in Gruntfile.js. The option --no-color suppresses odd characters in the build log that control the font color

when Grunt is called from the console. For additional details about the file contents, see the appendix.

6. Press Save.

To test the job, apply a local change on your project, create a Git commit and push it to the master branch in Gerrit. After two

minutes, the CI build starts running.

8. Creating the Voter Build

We create the voter build as a copy of the CI build and modify the configuration.

1. Open Jenkins, select New Item to create a new job for the voter build, enter an appropriate item name (in our

example VO_nw.epm.refapps.ext.shop_master), and enter CI_nw.epm.refapps.ext.shop_master into the filed Copy existing item.

Select OK.

2. In the Source Code Management section, change the following configuration entries:

Field Value

Source Code Management: Ref spec
refs/changes/*:refs/changes/*

Branches to build $GERRIT_REFSPEC

3. In the Build Triggers section, unselect Poll SCM and select Gerrit event instead. Enter the following data:

Field Value

Choose a Server
<the Gerrit server you already have defined in Jenkins>

Add Patchset Created

Gerrit Project Plain: <the Gerrit project name>; Branches Plain: master

4. In the Command field of the Build section, remove the zip target from the Grunt call since the creation of the zip file is not

needed in the voter build:
5. npm install
6. grunt --no-color default

7. Save.

You may test the voter and the CI build jobs: apply a local change on your project, create a Git commit and push it to Gerrit. The

voter build is triggered immediately. Provided, your change does not contain build errors, verify and submit it in Gerrit. After two

minutes, the CI build starts running.

9. Enabling the Jenkins Slave to Perform RFC Calls

The next step of the CI process is uploading the application into the ABAP development system. The technical tool for the

communication between the CI server (Jenkins in this example) and the ABAP system is the SAP NetWeaver RFC (remote function

call) library, which executes remote-enabled ABAP function modules from remote locations. From inside a Grunt build, the library is

used via the Node.js wrapper node-rfc. The SAP NetWeaver RFC Library must be installed on the Jenkins slave machine. You can

download it from the Software Downloads page of SAP ONE Support Launchpad.

SAP ONE Support Launchpad

https://launchpad.support.sap.com/

We have tested the node-rfc module with Node.js 4.4.3 on the following platforms:

• SUSE Linux Enterprise Server 12

• Ubuntu 16.04

• Red Hat Enterprise Linux Server release 7.2

To install the library, ensure the g++ compiler collection package has first been installed on the machine.

Procedure

1. Enter SAP ONE Support Launchpad, navigate to Software Downloads and search for SAP NW RFC SDK 7.20. Choose the

operating system that is running on your Jenkins slave machine, and download the archive. To extract the archive, you need

SAPCAR, which is also available in the SAP ONE Support Launchpad.

2. Log in to the Jenkins slave machine as root.

3. Install the SAP NetWeaver RFC library by extracting it using SAPCAR.EXE into a dedicated directory, for

example, /opt/sap/nwrfcsdk:
4. mkdir -p /opt/sap
5. cd /opt/sap
6. <SAPCAR executable> -xvf <path to the sar archive>/NWRFC_40-20004565.SAR

For additional details, see the installation documentation:

SAP NW RFC Installation on the node-rfc

7. Still as user root, create a new file /etc/ld.so.conf.d/nwrfcsdk.conf with the following content:
8. # include nwrfcsdk
9. /opt/sap/nwrfcsdk/lib

http://sap.github.io/node-rfc/install.html

The directory you enter must reflect your actual installation directory.

10. From the command line, run ldconfig which sets symbolic links to the dynamic libraries so they can be found at runtime.

11. Make sure that the variable SAPNWRFC_HOME pointing to the RFC library directory is set in the environment of user jenkins.

If bash is the login shell, we recommend that you add a line similar to the one below into the .bashrc file of the user jenkins:
12. export SAPNWRFC_HOME=/opt/sap/nwrfcsdk

10. Creating a Jenkins Job for RFC Calls

The example uploads the application into the ABAP development system as a separate Jenkins job. This corresponds to the

separation of the CI build on one side from ABAP life-cycle management on the other side. Accordingly, create a new

file Gruntfile_ABAP.js that is separate from the already existing file Gruntfile.js. Gruntfile_ABAP.js implements node-rfcmodule calls

inside Grunt tasks for different purposes: transport request creation, application upload and transport request release. Depending

on the scenario (full automation or manual creation of transport requests), the appropriate tasks are passed to the grunt command

as parameters.

The upload of the zipped application is done by a pull from the ABAP system: it requests the zip via HTTP directly from the Jenkins

workspace directory. If access to the Jenkins workspace is more restrictive, an alternative solution using Nexus as artifact repository

can be applied.

Procedure

Defining the Job

1. Open Jenkins and select New Item to create a new job named AI_nw.epm.refapps.ext.shop_master (AI stands for ABAP

import). Select Freestyle Project, and press OK.

2. Select This build is parametrized, add the following string parameters and leave their default values empty:

Name Value

ABAP_PACKAGE <empty>

ABAP_APPLICATION_NAME <empty>

ABAP_APPLICATION_DESC <empty>

ABAP_DEVELOPMENT_SERVER <empty>

ABAP_DEVELOPMENT_INSTANCE <empty>

ABAP_DEVELOPMENT_CLIENT <empty>

CI_BUILD_NUMBER <empty>

GIT_COMMIT <empty>

3. Continue entering data into the job configuration:

Field Value

Restrict where this project can be run
builds

Source Code Management None

Build Environment

Delete workspace before build starts checked

Inject password to build as environment variables checked

Field Value

Global passwords checked

Mask password parameters checked

Provide Node & npm bin/folder to PATH checked

Installation <The node installation name as defined above>

4. In the Build section, add a build step Copy artifacts from another project. Enter the following values:

Field Value

Project name
CI_nw.epm.refapps.ext.shop_master

Which build Upstream build that triggered this job

Artifacts to copy **

5. This simple example uses the Jenkins archive mechanism to pass the zipped application from the CI build job to this one.

Also, the Grunt build file is passed this way, which avoids cloning the source code repository.

6. Add a second build step Execute shell and enter as Command:

7. npm install
8. node_modules/grunt-cli/bin/grunt --no-color --gruntfile Gruntfile_ABAP.js createTransportRequest uploadToABAP

releaseTransport

Gruntfile_ABAP.js (created in a subsequent step) contains the definition of the tasks given here. The

task createTransportRequest creates a transport request in the ABAP system. The connection data comes from the job

parameters and the masked credentials that are defined below. The number of the transport request persists in the job

workspace in a file named target/CTS_Data.txt from where it can be fetched by the other tasks.

The task uploadToABAP uploads the application as zip file into the ABAP system. The transport request number is read from the

data file.

The task releaseTransport releases the transport request, including all the transport tasks inside it.

This example implementation corresponds to the fully automated scenario.

9. Save.

10. In Jenkins, go to Manage Jenkins > Configure System > Global Passwords.

11. Define the credentials for accessing the ABAP system to upload the application. Add the names ABAP_DEVELOPMENT_USER,

and ABAP_DEVELOPMENT_PASSWORD, and set their correct values. The values of these variables are masked in the build log.

12. Save.

This configuration disables parallel execution of this job. To avoid conflicts due to locked objects in the transport request, do not

enable it.

Adapting the CI Build Job

The job just defined must be automatically triggered after successful execution of the CI build job.

1. Open CI_nw.epm.refapps.ext.shop_master.

2. In the generic part of the job configuration, choose This build is parametrized and enter the string parameters from the

table. The SAPUI5/Fiori application is stored in the ABAP repository as a BSP (Business Server Page) application within a

certain ABAP package. Choose appropriate names for both. You must manually create the ABAP package name in the ABAP

system; see "Preparing the ABAP development system" below.

Name Default Value

ABAP_PACKAGE <The package name in the ABAP system where the application resides>

ABAP_APPLICATION_NAME <The name as the BSP application in the ABAP system>

ABAP_APPLICATION_DESC <The description of the BSP application in the ABAP system>

ABAP_DEVELOPMENT_SERVER <The host name of ABAP system>

ABAP_DEVELOPMENT_INSTANCE <The instance number of the ABAP system>

ABAP_DEVELOPMENT_CLIENT <The client number of the ABAP system to be used>

3. In the Post-build Action section, add an Archive the artifacts step. Enter the following data into the Files to archive field:

4. package.json, Gruntfile_ABAP.js, target/*-opt-static-abap.zip

5. Add a second Post-build Action of type Trigger parametrized build on other projects and enter the following data:

Field Value

Projects to build
AI_nw.epm.refapps.ext.shop_master

Field Value

Trigger when build is Stable

6. To ensure that the parameters of this job are forwarded to the sequel job, select Add Parameters > Current build

parameters.

7. Select Add Parameters > Predefined Parameters and enter the following:

8. CI_BUILD_NUMBER=$BUILD_NUMBER
9. GIT_COMMIT=$GIT_COMMIT

10. The Git commit ID and the CI build number can then be written by the upload job into the change request text field.

11. Save.

11. Preparing the ABAP Development System

The SAPUI5/Fiori application needs to be assigned to an ABAP package.

1. Use SAP Logon to access the ABAP development system.

2. Enter transaction se80, select Repository Browser, then select Package. Enter an appropriate name. You may also want to

create sub-packages.

Create a transport request by pressing Create. In the dialog, enter an appropriate description and Save.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/abap-workbench-1.png

3. Release the transport request. In the object navigator of transaction se80, open the Transport Organizer tab, select the

transport request just created and its contained task. Release both.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/abap-workbench-2.png
https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/abap-workbench-3.png

12. Creating the Grunt File for RFC Calls

The RFC features are implemented in a second Grunt file named Gruntfile_ABAP.js. The main purpose of this file is to wrap the node-

rfc library as Grunt tasks. Additional documentation for the node-rfc library is available using the following links:

Node.js RFC connector Documentation

Node.js RFC connector on GitHub

Procedure

1. From SAP Web IDE, open your SAPUI5 or Fiori project.

2. Select your project folder, choose New > File and enter Gruntfile_ABAP.js as the file name.

3. Copy the content of Gruntfile_ABAP.js from the appendix and paste it into the new file.

4. In the Git pane, stage the new file, enter a commit description and select Commit and Push.

Within two minutes, you should see the CI build start. When it finishes, it triggers the ABAP upload build.

13. Roundtrip through the CI Process

Everything is now in place to execute a roundtrip through the CI process.

Procedure

The following steps simulate the actions that are performed many times each day by developers.

1. Apply changes to your project sources either using SAP Web IDE in the cloud or working locally.

http://sap.github.io/node-rfc/
https://github.com/SAP/node-rfc

2. Create a Git commit and push it to Gerrit.

3. Monitor the voter build and open Gerrit to view the voting of Jenkins on your change.

4. Review and submit the change in Gerrit. Within 2 minutes after submission, the CI build starts.

5. Monitor the CI build. Check the result: open transaction se80 in SAP Logon and navigate to the package. Verify that the

application has been uploaded.

6. Monitor the transports. Open transaction stms in SAP Logon and navigate to Import overview. Select your target system -

the ABAP test system in our example - and display the import queue. A new request entry is waiting to be imported.

14. Static Code Analysis with ESLint

ESLint is a commonly used static code analysis tool for JavaScript. This section discusses, at a very high level, how to integrate ESLint

into the Grunt build.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/stms-1.png

ESLint Home

Procedure

1. Create an ESLint configuration file. One convenient way to do this is to execute the following commands on a local machine:

2. npm install -g eslint
3. eslint --init

You can find additional information at the following location:

ESLint on the npm repository

Depending on the configuration format you have chosen, there is now a new file, named, for example, .eslintrc.json. You

may later reconfigure this file by switching rules on and off according to your requirements.

4. Open Gruntfile.js. Switch on ESLint tests by adding the eslint sub task into the default task:
5. grunt.registerTask("default", ["clean", "eslint", "copy:copyToDbg", "openui5_preload:preloadDbg", "copy:copyToTmp",
6. "uglify:uglifyTmp", "cssmin", "openui5_preload:preloadTmp", "copy:copyDbgToTmp",
7. "uglify:uglifyPreload"]);

Verify that the name of the ESLint configuration file is correct:

 "eslint": {
 options: {
 configFile: ".eslintrc.json",
 },
 target: [webAppDir + "/**/*.js"]
 },

8. Commit the change and push. Monitor the CI build result.

http://eslint.org/
https://www.npmjs.com/package/eslint

15. Code Page Check

Uploading the zipped application to the ABAP system requires you to specify a code page. As the default, the standard code page

of SAP GUI is used. However, this may differ from the code pages used by developers who are developing the SAP UI5 or Fiori

application. We recommend that you define a standard code page. UTF8 is a good candidate for such a standard, and our example

follows this. You may want to choose a different code page that depends on the majority of locales used by developers in your

organization. The rule is enforced by the grunt-encoding plugin which checks the source files for their correct encoding.

Procedure

1. Open Gruntfile.js. Switch on the encoding check tests by adding the encoding sub-task into the default task:
2. grunt.registerTask("default", ["clean", "encoding", "eslint", "copy:copyToDbg", "openui5_preload:preloadDbg",

"copy:copyToTmp",
3. "uglify:uglifyTmp", "cssmin", "openui5_preload:preloadTmp", "copy:copyDbgToTmp",
4. "uglify:uglifyPreload"]);

Check whether UTF-8 is the correct encoding for your use case. Eventually, change it according to your setup:

 "encoding": {
 options: {
 encoding: "UTF8"
 },

5. Commit the change and push. Monitor the CI build result.

16. Automated Testing

The examples given above are intended only to give you an impression of how checks can be handled in Grunt. There are many

frameworks available for automated unit testing and application testing and the "best" option to use depends on the explicit project

setup. We do not provide a specific recommendation. In general, the Gruntfile.js will grow with additional checks as your code

quality requirements increase.

17. Alternative Approach Using Manual Transport Request Creation

This section discusses an alternative process in which transport requests are created manually. It is intended only to give you an idea

of how you might adapt the automated process.

Procedure

A: Creating the Registration Job for the Transport Request

An open transport request must exist in the system, with its number made available to the upload task by a registration job. This

registration job is manually triggered by the quality manager or any other responsible person immediately after creating the

transport request in the ABAP system. The job takes the transport request number as an argument and stores it in Jenkins to be

fetched by the CI build job, which must be modified accordingly.

1. To create the registration job, open Jenkins and select New Item. Enter an appropriate item name

like TR_nw.epm.refapps.ext.shop_master (TR stands for Transport Request) and select Freestyle Project. Press OK.

2. In the general section of the project configuration, select This build is parametrized, select Add Parameter > String

Parameter and enter TRANSPORT_REQUEST as Name. Leave Default Value empty.

3. Select Restrict where this project can be run and enter builds.

4. In the Build environment section, select Delete workspace before build starts.

5. In the Build section, select Add build step > Execute shell and enter the following:

6. mkdir target
7. echo "{\"REQUESTID\":\"$TRANSPORT_REQUEST\"}" > target/CTS_Data.txt

8. In the Post-build Actions section, select Add post-build action > Archive the artifacts and enter target/CTS_Data.txtinto

the Files to archive field.

9. Save.

10. Open the configuration of the job AI_nw.epm.refapps.ext.shop_master.

11. In the Build section, select Add build step > Copy artifacts from another project. This build step must be executed after

the already existing copy step and before the Execute shell build step. You can put the steps into the right order by dragging

and dropping in the front end. Enter the following configurations into the new step:

Field Value

Project name
TR_nw.epm.refapps.ext.shop_master

Which build Latest successful build

Artifacts to copy target/CTS_Data.txt

12. Change the command in the Execute shell step as follows:

13. npm install
14. node_modules/grunt-cli/bin/grunt --no-color --gruntfile Gruntfile_ABAP.js uploadToABAP

15. Save.

B: Preparing the ABAP Development System

If one does not already exist, create an ABAP package as described above.

C: Creating the Transport Request and Registering its Number to Jenkins

A transport request must be available such that the application can be uploaded to the ABAP system.

1. Use SAP Logon to access the ABAP development system.

2. Enter the transport organizer via transaction se09 and press Create.

3. Select Workbench request.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/se09-1.png

4. Enter a description and press Save.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/se09-2.png

5. Copy the number of the transport request just created.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/se09-3.png

6. Open the job TR_nw.epm.refapps.ext.shop_master in Jenkins. Select Build with Parameters and enter the transport request

number.

https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/se09-4.png
https://github.com/SAPDocuments/Tutorials/blob/master/tutorials/ci-best-practices-fiori-abap/transport-request-jenkins.png

7. Select Build.

D: Processing Changes

1. From SAP Web IDE, or working locally, apply changes to the sources of your project sources.

2. Create a commit and push it to Gerrit.

3. Monitor the CI build. Check the result: open transaction se80 in the SAP Logon and navigate to the package. Verify that the

files have been uploaded.

E: Releasing the Change Request and Creating a New One

At predefined times, for example once a day, the responsible person releases the transport request to bring changes to the ABAP

test system. A new transport request must be created before and registered to Jenkins; otherwise, the CI build may encounter an

error because the transport request to which it attempts to assign files is already closed.

1. Execute all the steps in "Creating the transport request and registering its number to Jenkins" above. From now on, the CI

build uses the new transport request.

2. Use SAP Logon to access the ABAP development system.

3. In transaction se09, select the transport request that was in use before and release it.

18. (Optional) Using Nexus as the Artifact Repository

Due to access restrictions, HTTP requests from the ABAP development system to Jenkins for fetching the application zip file might

be disabled. In this situation, you might want to use a Nexus repository to temporarily store the artifact. To do so, modify the jobs

for the CI build and the ABAP import accordingly.

Procedure

A: Changing the CI Build Job

1. Open CI_nw.epm.refapps.ext.shop_master.

2. Add a new string parameter named NEXUS_SNAPSHOT_REPO. For Default value, enter the URL of the Nexus snapshot repository

where the application zip file is stored.

3. In the Build section, change the command of the Execute shell step to the following:

4. npm install
5. node_modules/grunt-cli/bin/grunt --no-color default createZip deployToNexus

6. In the Post-build Action > Archive the artifacts step, remove the zip file entry:

7. package.json, Gruntfile_ABAP.js

8. Save.

B. Changing the Job for RFC Calls

1. Open AI_nw.epm.refapps.ext.shop_master.

2. Add a new string parameter named NEXUS_SNAPSHOT_REPO. Leave the Default Value empty.

3. Save.

The implementation of the upload task in Gruntfile_ABAP.js file checks whether there is a local zip file in the Jenkins workspace. If

not, then the alternative zipFileURL, which is calculated from the artifact co-ordinates, is passed to the ABAP system.

Start a roundtrip for this process implementation by pushing a change. The CI build deploys the generated zip file to Nexus from

where it is fetched by the ABAP system.

Appendix

package.json

The package.json file contains meta-information about the JavaScript project. The dependencies to Grunt plugins are needed during

build time, not at run time; they are therefore entered as devDependencies. The scenario described here has been tested with the

versions shown below; we cannot guarantee compatibility of the plugins in other versions.

The file listed here is the minimum necessary to make the process skeleton run. You might want to add more data according to your

requirements.

You will need to enter some data manually, as the name and the version of your package.

Npm documentation for package.json

{
 "name": "{name of the package}",
 "version": "{version of the package}",
 "description": "{description of the package}",
 "private": true,
 "devDependencies": {
 "grunt": "0.4.5",
 "grunt-cli": "1.2.0",
 "grunt-encoding": "0.3.0",
 "grunt-eslint": "19.0.0",
 "grunt-contrib-clean": "1.0.0",
 "grunt-contrib-copy": "1.0.0",
 "grunt-contrib-cssmin": "1.0.1",

https://docs.npmjs.com/files/package.json

 "grunt-contrib-uglify": "1.0.1",
 "grunt-folder-list": "1.1.0",
 "grunt-mkdir": "1.0.0",
 "grunt-nexus-deployer": "0.0.8",
 "grunt-openui5": "0.9.0",
 "grunt-zip": "0.17.1",
 "node-rfc": "0.1.11"
 }
}
Gruntfile.js

Gruntfile.js defines the tasks for building the SAPUI5/Fiori application. All tasks are provided by the Grunt community, and some of

them are specific for SAPUI5 development. The tasks provide all needed steps for minifying the JavaScript sources, creating the

preload file, and uploading the result into an ABAP system. Optionally, the result may be packaged into a zip file (not needed in our

scenario).

In the build result, the minified files inherit the name from the original source files. For debugging purposes, the original files are

kept and uploaded to the ABAP system under the original name but with a dbg suffix.

The following tasks are executed during a Fiori build:

1. clean: Cleans up the build workspace by removing results from previous build runs.

2. copy:copyToDbg: Copies the original files to a debug file folder and renames them using a dbg suffix.

3. openui5_preload:preloadDbg: Generates a preload file that contains the contents of the debug files.

4. copy:copyToTmp: Copies the original files for minification.

5. uglify:uglifyTmp: Minifies JavaScript files.

6. cssmin: Minifies css files.

7. openui5_preload:preloadTmp: Generates a preload file that contains the contents of minified files.

8. copy:copyDbgToTmp: Merges the minified files and debug files into one folder.

9. uglify:uglifyPreload: Minifies of the preload file.

10. zip: Creates the application zip file.

Note: the Grunt script below is meant only as an example for demonstrating a very rudimentary CI process.

Configuring tasks in Grunt documentation

"use strict";

module.exports = function(grunt) {
 // Variables from environment
 var nexusUser = process.env.NEXUS_DEPLOY_USER;
 var nexusPassword = process.env.NEXUS_DEPLOY_PASSWORD;
 var nexusSnapshotRepoURL = process.env.NEXUS_SNAPSHOT_REPO;

 // Project properties
 var webAppDir = "webapp";
 var targetDir = "target";
 var tmpDir = targetDir + "/tmp";
 var tmpDirDbg = targetDir + "/tmp-dbg";
 var zipFileSuffix = "-opt-static-abap.zip";
 var preloadPrefix = "nw/epm/refapps/ext/shop";
 var nexusGroupId = "com.yourcompany";

 // Project configuration.
 grunt.initConfig({
 pkg: grunt.file.readJSON("package.json"),
 clean: {
 build: [targetDir]
 },
 encoding: {
 options: {
 encoding: "UTF8"
 },
 files: {
 src: [webAppDir + "/**/*.js", webAppDir + "/**/*.css",
 webAppDir + "/**/*.xml", webAppDir + "/**/*.json",
 webAppDir + "/**/*.html", webAppDir + "/**/*.properties"]
 }
 },
 eslint: {

http://gruntjs.com/configuring-tasks

 options: {
 configFile: ".eslintrc.json"
 },
 target: [webAppDir + "/**/*.js"]
 },
 copy: {
 copyToDbg: {
 files: [
 {
 expand: true,
 src: "**/*.js",
 dest: tmpDirDbg,
 cwd: webAppDir,
 filter: function(filepath) {
 // prevent js from localService to be copied
 return !filepath.match(new RegExp(webAppDir + "(\\/|\\\\)localService", "gi"));
 }
 },
 {
 expand: true,
 src: "**/*.css",
 dest: tmpDirDbg,
 cwd: webAppDir
 }]
 },
 copyToTmp: {
 files: [
 {
 expand: true,
 src: "**/*.js",
 dest: tmpDir,
 cwd: webAppDir,
 filter: function(filepath) {
 // prevent js from localService to be copied
 return !filepath.match(new RegExp(webAppDir + "(\\/|\\\\)localService", "gi"));
 }

 },
 {
 expand: true,
 src: "**/*.css",
 dest: tmpDir,
 cwd: webAppDir
 },
 {
 expand: true,
 src: "localService/metadata.xml",
 dest: tmpDir,
 cwd: webAppDir
 },
 {
 expand: true,
 src: "**/*",
 dest: tmpDir,
 cwd: webAppDir,
 filter: function(filepath) {
 // prevent js and css files and contents of webapp/test from being copied
 return !filepath.match(new RegExp("(" + webAppDir +
"(\\/|\\\\)test|${webAppDir}(\\/|\\\\)localService|\\.js$|\\.css$|\\test.html$)", "gi"));
 }
 }]
 },
 copyDbgToTmp: {
 files: [
 {
 expand: true,
 src: "**/*.js",
 dest: tmpDir,
 cwd: tmpDirDbg,
 rename: function(dest, src) {
 return dest + "/" + src.replace(/((\.view|\.fragment|\.controller)?\.js)/, "-dbg$1");
 }
 },

 {
 expand: true,
 src: "**/*.css",
 dest: tmpDir,
 cwd: tmpDirDbg,
 rename: function(dest, src) {
 return dest + "/" + src.replace(".css", "-dbg.css");
 }
 }]
 }
 },
 uglify: {
 uglifyTmp: {
 files: [
 {
 expand: true,
 src: "**/*.js",
 dest: tmpDir,
 cwd: webAppDir,
 filter: function(filepath) {
 // prevent js from localService to be copied
 return !filepath.match(new RegExp(webAppDir + "(\\/|\\\\)localService", "gi"));
 }
 }]
 },
 uglifyPreload: {
 files: [
 {
 expand: true,
 src: tmpDir + "/Component-preload.js"
 }]
 }
 },
 cssmin: {
 build: {
 files: [

 {
 expand: true,
 src: "**/*.css",
 dest: tmpDir,
 cwd: webAppDir
 }]
 }
 },
 openui5_preload: {
 preloadDbg: {
 options: {
 resources: {
 cwd: tmpDirDbg,
 src: ["**/*.js"],
 prefix: preloadPrefix
 },
 compress: false,
 dest: tmpDirDbg
 },
 components: true
 },
 preloadTmp: {
 options: {
 resources: {
 cwd: tmpDir,
 src: ["**/*.js"],
 prefix: preloadPrefix
 },
 compress: false,
 dest: tmpDir
 },
 components: true
 }
 },
 nexusDeployer: {
 build: {

 options: {
 groupId: nexusGroupId,
 artifactId: "<%= pkg.name %>",
 version: "<%= pkg.version %>-SNAPSHOT",
 packaging: "zip",
 auth: {
 username: nexusUser,
 password: nexusPassword
 },
 pomDir: targetDir + "/pom",
 url: nexusSnapshotRepoURL,
 uploadMetadata: false,
 artifact: targetDir + "/<%= pkg.name %>" + zipFileSuffix
 }
 }
 },
 zip: {
 build: {
 cwd: tmpDir,
 src: tmpDir + "/**/*",
 dest: targetDir + "/<%= pkg.name %>" + zipFileSuffix
 }
 }
 });

 grunt.loadNpmTasks("grunt-contrib-clean");
 grunt.loadNpmTasks("grunt-contrib-copy");
 grunt.loadNpmTasks("grunt-contrib-uglify");
 grunt.loadNpmTasks("grunt-contrib-cssmin");
 grunt.loadNpmTasks("grunt-encoding");
 grunt.loadNpmTasks("grunt-zip");
 grunt.loadNpmTasks("grunt-openui5");
 grunt.loadNpmTasks("grunt-nexus-deployer");
 grunt.loadNpmTasks("grunt-eslint");

 grunt.registerTask("default", ["clean", "copy:copyToDbg", "openui5_preload:preloadDbg", "copy:copyToTmp",

 "uglify:uglifyTmp", "cssmin", "openui5_preload:preloadTmp", "copy:copyDbgToTmp",
 "uglify:uglifyPreload"]);
 grunt.registerTask("createZip", ["zip"]);
 grunt.registerTask("deployToNexus", ["nexusDeployer"]);
};
Gruntfile_ABAP.js

This Grunt file contains the logic for RFC connections. It implements tasks that create a transport request, upload the application to

the ABAP system, and release the transport request. The connection data to the ABAP system is passed from the environment of the

Jenkins job.

The task that creates the transport request also creates a file target/CTS_Data.txt that persists the transport request number. The

other tasks fetch the transport request number from this file. Typically, the tasks are called through a Grunt command like the

following:
node_modules/grunt-cli/bin/grunt --gruntfile Gruntfile_ABAP.js createTransportRequest uploadToABAP releaseTransport

Alternatively, you can execute the upload without first creating a transport request, passing the transport request number as an

argument similar to the following:

node_modules/grunt-cli/bin/grunt --gruntfile Gruntfile_ABAP.js uploadToABAP:<transport request number>

Implementing the Grunt tasks is straightforward using the node-rfc module documentation.

Node.js RFC connector Documentation

Node.js RFC connector on GitHub

Important: The RFC call is asynchronous. The Grunt process flow must wait for it to finish, which is why we use promises:

"use strict";

var rfc = require("node-rfc");
var fs = require("fs");

module.exports = function(grunt) {

 // Project specific variables

http://sap.github.io/node-rfc
https://github.com/SAP/node-rfc

 var abapDevelopmentUser = process.env.ABAP_DEVELOPMENT_USER;
 var abapDevelopmentPassword = process.env.ABAP_DEVELOPMENT_PASSWORD;
 var abapDevelopmentServer = process.env.ABAP_DEVELOPMENT_SERVER;
 var abapDevelopmentInstance = process.env.ABAP_DEVELOPMENT_INSTANCE;
 var abapDevelopmentClient = process.env.ABAP_DEVELOPMENT_CLIENT;
 var abapApplicationName = process.env.ABAP_APPLICATION_NAME;
 var abapApplicationDesc = process.env.ABAP_APPLICATION_DESC;
 var abapPackage = process.env.ABAP_PACKAGE;
 var jobURL = process.env.JOB_URL;
 var nexusSnapshotRepoURL = process.env.NEXUS_SNAPSHOT_REPO;
 var gitCommit = process.env.GIT_COMMIT;

 // Global Variables
 var targetDir = "target";
 var zipFileSuffix = "-opt-static-abap.zip";
 var ctsDataFile = targetDir + "/CTS_Data.txt";
 var nexusGroupId = "com.yourcompany";

 // Project configuration.
 var abapConn = {
 user: abapDevelopmentUser,
 passwd: abapDevelopmentPassword,
 ashost: abapDevelopmentServer,
 sysnr: abapDevelopmentInstance,
 client: abapDevelopmentClient
 };
 grunt.initConfig({
 pkg: grunt.file.readJSON("package.json"),
 createTransportRequest: {
 options: {
 conn: abapConn,
 author: abapDevelopmentUser,
 description: "Commit: " + gitCommit
 }
 },
 uploadToABAP: {

 options: {
 conn: abapConn,
 zipFile: targetDir + "/<%= pkg.name %>" + zipFileSuffix,
 zipFileURL: nexusSnapshotRepoURL + "/" + nexusGroupId.replace(/\./g, "/") + "/<%= pkg.name %>/<%= pkg.version
%>-SNAPSHOT/<%= pkg.name %>-<%= pkg.version %>-SNAPSHOT.zip",
 codePage: "UTF8"
 }
 },
 releaseTransport: {
 options: {
 conn: abapConn
 }
 }
 });

 var rfcConnect = function(functionModule, importParameters, gruntContext) {
 return new Promise(function(resolve, reject) {
 var conn = gruntContext.options().conn;
 var client = new rfc.Client(conn);

 grunt.log.writeln("RFC client lib version:", client.getVersion());

 client.connect(function(err) {
 if (err) { // check for login/connection errors
 grunt.log.errorlns("could not connect to server", err);
 return reject();
 }
 // invoke remote enabled ABAP function module
 grunt.log.writeln("Invoking function module", functionModule);
 client.invoke(functionModule,
 importParameters,
 function(err, res) {
 if (err) { // check for errors (e.g. wrong parameters)
 grunt.log.errorlns("Error invoking", functionModule, err);
 return reject();
 }

 client.close();
 grunt.log.writeln("Messages:", res.EV_LOG_MESSAGES);
 return resolve(res);
 });
 });
 });
 };

 grunt.registerTask("createTransportRequest", "Creates an ABAP Transport Request", function() {
 grunt.log.writeln("Creating Transport Request");
 var importParameters = {
 AUTHOR: this.options().author,
 TEXT: this.options().description
 };
 var done = this.async();
 rfcConnect("BAPI_CTREQUEST_CREATE", importParameters, this)
 .then(
 function(returnValue) {
 if (returnValue.EV_SUCCESS == "E" || returnValue.EV_SUCCESS == "W") {
 grunt.log.errorlns("Error invoking BAPI_CTREQUEST_CREATE.");
 grunt.log.errorlns("Message Id:", returnValue.EV_MSG_ID);
 grunt.log.errorlns("Message No:", returnValue.EV_MSG_NO);
 grunt.log.errorlns("Messages:", returnValue.EV_LOG_MESSAGES);
 done(false);
 return;
 }
 if (returnValue.REQUESTID == "") {
 grunt.log.errorlns("Error invoking BAPI_CTREQUEST_CREATE.");
 grunt.log.errorlns("Transport request could not be created.");
 grunt.log.errorlns(returnValue.RETURN.MESSAGE);
 done(false);
 return;
 }
 grunt.log.writeln("Transport request", returnValue.REQUESTID, "created.");
 if (fs.existsSync(targetDir) === false) {

 fs.mkdirSync(targetDir);
 }
 fs.writeFile(ctsDataFile,
 JSON.stringify(
 { REQUESTID: returnValue.REQUESTID }
),
 function(err) {
 if (err) {
 grunt.log.errorlns("Error Creating file:", err);
 done(false);
 return;
 }
 grunt.log.writeln("Created file:", ctsDataFile);
 done();
 }
)
 },
 function() {
 done(false);
 });
 });

 grunt.registerTask("uploadToABAP", "Uploads the application to the ABAP System", function(transportRequest) {
 grunt.log.writeln("Uploading to ABAP");
 if (!transportRequest) {
 if (!fs.existsSync(ctsDataFile)) {
 grunt.log.errorlns("No Transport request specified. Pass one explicitly or run createTransportRequest first.");
 return (false);
 }
 transportRequest = JSON.parse(fs.readFileSync(ctsDataFile, { encoding: "utf8" })).REQUESTID;
 }
 grunt.log.writeln("Transport request:", transportRequest);
 var url = "";
 if (!(typeof this.options().zipFile === "undefined") && fs.existsSync(this.options().zipFile)) {
 url = jobURL + "/ws/" + this.options().zipFile;
 }

 else {
 url = this.options().zipFileURL;
 }
 var importParameters = {
 IV_URL: url,
 IV_SAPUI5_APPLICATION_NAME: abapApplicationName,
 IV_SAPUI5_APPLICATION_DESC: abapApplicationDesc,
 IV_PACKAGE: abapPackage,
 IV_WORKBENCH_REQUEST: transportRequest,
 IV_TEST_MODE: "-",
 IV_EXTERNAL_CODE_PAGE: this.options().codePage
 };
 var done = this.async();
 grunt.log.writeln("Uploading application from", url);
 rfcConnect("/UI5/UI5_REPOSITORY_LOAD_HTTP", importParameters, this)
 .then(
 function(returnValue) {
 if (returnValue.EV_SUCCESS == "E" || returnValue.EV_SUCCESS == "W") {
 grunt.log.errorlns("Error invoking", "/UI5/UI5_REPOSITORY_LOAD_HTTP");
 grunt.log.errorlns("Message Id:", returnValue.EV_MSG_ID);
 grunt.log.errorlns("Message No:", returnValue.EV_MSG_NO);
 grunt.log.errorlns("Messages:", returnValue.EV_LOG_MESSAGES);
 done(false);
 return;
 }
 grunt.log.writeln("Application uploaded.");
 done();
 },
 function() {
 done(false);
 });
 });

 grunt.registerTask("releaseTransport", "Releases an ABAP Transport Request", function(transportRequest) {
 grunt.log.writeln("Releasing Transport Request");
 if (!transportRequest) {

 if (!fs.existsSync(ctsDataFile)) {
 grunt.log.errorlns("No Transport request specified. Pass one explicitly or run createTransportRequest first.");
 return (false);
 }
 transportRequest = JSON.parse(fs.readFileSync(ctsDataFile, { encoding: "utf8" })).REQUESTID;
 }
 grunt.log.writeln("Transport request:", transportRequest);
 var importParameters = {
 REQUESTID: transportRequest,
 COMPLETE: "X",
 BATCH_MODE: "X"
 }
 var done = this.async();
 rfcConnect("BAPI_CTREQUEST_RELEASE", importParameters, this)
 .then(
 function(returnValue) {
 if (returnValue.EV_SUCCESS == "E" || returnValue.EV_SUCCESS == "W") {
 grunt.log.errorlns("Error invoking", "BAPI_CTREQUEST_RELEASE");
 grunt.log.errorlns("Message Id:", returnValue.EV_MSG_ID);
 grunt.log.errorlns("Message No:", returnValue.EV_MSG_NO);
 grunt.log.errorlns("Messages:", returnValue.EV_LOG_MESSAGES);
 done(false);
 return;
 }
 grunt.log.writeln("Transport request released.");
 done();
 },
 function() {
 done(false);
 });
 });
};

